Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

Hexafluoroiodium(VII) hexafluoroarsenate

Evgeny Goreshnik* and Zoran Mazej

Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39 1000 Ljubljana, Slovenia
Correspondence e-mail: evgeny.goreshnik@ijs.si

Received 20 April 2006
Accepted 12 May 2006
Online 15 June 2006
The structure of hexafluoroiodium(VII) hexafluoroarsenate, $\mathrm{IF}_{6} \mathrm{AsF}_{6}$, has been determined by X-ray diffraction using a single crystal grown from a saturated solution in anhydrous HF. $\mathrm{IF}_{6} \mathrm{AsF}_{6}$ crystallizes in the cubic space group $P a \overline{3}$ with a simple NaCl -like ionic packing. The I and As atoms occupy the $4 a$ and $4 b$ Wyckoff positions, respectively, with $\overline{3}$ symmetry.

Comment

Until now, the single-crystal X-ray structure of $\mathrm{IF}_{6} \mathrm{Sb}_{2} \mathrm{~F}_{11}$ represented the only detailed crystallographic study of salts containing the $\mathrm{IF}_{6}{ }^{+}$cation (Lehmann et al., 2004). $\mathrm{IF}_{6} \mathrm{AsF}_{6}$ was first prepared by the reaction of IF_{7} with AsF_{5} (Seel \& Detmer, 1958, 1959). Powder X-ray diffraction studies of $\mathrm{IF}_{6} \mathrm{AsF}_{6}$ were performed later (Beaton, 1966; Christe \& Sawodny, 1967). We have determined the structure of $\mathrm{IF}_{6} \mathrm{AsF}_{6}$ by single-crystal diffraction techniques to obtain more precise structural data and to allow a comparison of the cation geometry with that previously found in $\mathrm{IF}_{6} \mathrm{Sb}_{2} \mathrm{~F}_{11}$.
$\mathrm{IF}_{6} \mathrm{AsF}_{6}$ crystallizes in the cubic space group $P a \overline{3}$, in agreement with the published data based on X-ray powder diffraction experiments. The structure consists of alternating $\mathrm{IF}_{6}{ }^{+}$and $\mathrm{AsF}_{6}{ }^{-}$octahedra packed in an $\mathrm{NaCl}-$ like arrangement (Fig. 1). The closest As \cdots I distance is 4.705 (1) \AA. The I and As atoms are both located at sites with $\overline{3}$ symmetry (the $4 a$ and $4 b$ Wyckoff positions, respectively), resulting in six equal I-F distances and six equal As-F distances. The I-F bond lengths $[1.7744(17) \AA$] are in the same range as those in $\mathrm{IF}_{6} \mathrm{Sb}_{2} \mathrm{~F}_{11}$ (1.767-1.782 \AA at 173 K ; Lehmann et al., 2004). The As-F bond lengths [1.7200 (17) \AA] are very similar to those in $\mathrm{CsAsF}_{6}\left(1.714 \AA\right.$ A Loss \& Röhr, 1998). The neigbouring $\mathrm{IF}_{6}{ }^{+}$ and $\mathrm{AsF}_{6}{ }^{-}$octahedra are mutually tilted, possibly because of packing effects. The geometry of the $\mathrm{IF}_{6}{ }^{+}$cation in $\mathrm{IF}_{6} \mathrm{AsF}_{6}$ is almost identical to that in $\mathrm{IF}_{6} \mathrm{Sb}_{2} \mathrm{~F}_{11}$.

Bond-valence analysis of $\mathrm{IF}_{6} \mathrm{AsF}_{6}$ gives bond-valence sums of 6.972 v.u. (bond valence units) for I and 4.578 v.u. for As (Brese \& O'Keeffe, 1991), with contributions of 1.162 v.u. per F1 atom for the former and 0.763 v.u. per F2 atom for the latter.

Figure 1
A view of the unit-cell contents of $\mathrm{IF}_{6} \mathrm{AsF}_{6} . \mathrm{IF}_{6}{ }^{+}$and $\mathrm{AsF}_{6}{ }^{-}$ions are shown as light- and dark-grey octahedra, respectively.

Experimental

$\mathrm{IF}_{6} \mathrm{AsF}_{6}$ was synthesized by the oxidation of iodium pentafluoride by $\left[\mathrm{Ag}(\mathrm{HF})_{n}\right]^{2+}$, prepared by reaction of AgF_{2} with AsF_{5} in anhydrous HF: $2\left[\mathrm{Ag}(\mathrm{HF})_{n}{ }^{2+} \cdot\left(\mathrm{AsF}_{6}\right)_{2}{ }^{-}\right]+\mathrm{IF}_{5} \Rightarrow 2\left(\mathrm{Ag}^{+} \cdot \mathrm{AsF}_{6}{ }^{-}\right)+\mathrm{IF}_{6} \mathrm{AsF}_{6}+$ AsF 5 . Colourless block-shaped crystals of the title compound were grown from a saturated solution in anhydrous HF. Raman spectra recorded on single crystals were in agreement with literature data for $\mathrm{IF}_{6} \mathrm{AsF}_{6}$ (Beaton, 1966; Christe \& Sawodny, 1967).

Crystal data
$\mathrm{AsF}_{12} \mathrm{I}$
$M_{r}=429.82$
Cubic, $P a \overline{3}$
$a=9.409$ (2) \AA
$V=832.9(3) \AA^{3}$
$Z=4$
Data collection
Rigaku Mercury CCD diffractometer
ω scans
Absorption correction: multi-scan
(Blessing, 1995)
$T_{\text {min }}=0.115, T_{\text {max }}=0.2$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.063$
$S=1.10$
354 reflections
24 parameters

$$
D_{x}=3.428 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
$\mu=7.96 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Chunk, colourless
$0.3 \times 0.3 \times 0.2 \mathrm{~mm}$

3317 measured reflections 354 independent reflections
230 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=29.1^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0225 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.72 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.60 \mathrm{e}^{-3} \\
& \text { Extinction correction: } S H E L X L 97 \\
& \text { Extinction coefficient: } 0.0023(4)
\end{aligned}
$$

inorganic compounds

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Version 3.1; Bergerhoff et al., 1996); software used to prepare material for publication: WinGX (Version 1.70; Farrugia, 1999), enCIFer (Version 1.2; Allen et al., 2004) and TEXAN for Windows (Molecular Structure Corporation, 1999).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BC3005). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.

Beaton, S. P. (1966). PhD thesis, University of British Columbia, Canada. Bergerhoff, G., Berndt, M. \& Brandenburg, K. (1996). J. Res. Natl Inst. Stand. Technol. 101, 221-225.
Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1992). The DIRDIF92 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Brese, N. E. \& O’Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Christe, K. O. \& Sawodny, W. (1967). Inorg. Chem. 6, 1783-1788.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Lehmann, J. F., Schrobilgen, G. J., Christe, K. O., Kornath, A. \& Suotamo, R. J. (2004). Inorg. Chem. 43, 6905-6921.

Loss, S. \& Röhr, C. Z. (1998). Z. Naturforsch. Teil B, 53, 75-80.
Molecular Structure Corporation (1999). TEXSAN for Windows. Version 1.06. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.

Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Seel, F. \& Detmer, O. (1958). Angew. Chem. 70, 163-164.
Seel, F. \& Detmer, O. (1959). Z. Anorg. Allg. Chem. 301, 113-136.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

